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We present a characterization of quantum phase transitions in terms of the the overlap function between two
ground states obtained for two different values of external parameters. On the examples of the Dicke and XY
models, we show that the regions of criticality of a system are marked by the extremal points of the overlap and
functions closely related to it. Further, we discuss the connections between this approach and the Anderson
orthogonality catastrophe as well as with the dynamical study of the Loschmidt echo for critical systems.
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INTRODUCTION

Quantum phase transitions �QPTs� �1� have drawn a con-
siderable interest within various fields of physics in the re-
cent years. They are studied in condensed matter physics
because they provide valuable information about the novel
type of finite-temperature states of matter that emerge in the
vicinity of QPTs �1�. Unlike the ordinary phase transitions,
driven by thermal fluctuations, QPTs occur at zero tempera-
ture and are driven by purely quantum fluctuations. In the
parameter space, the points of nonanalyticity of the ground
state energy density are referred to as critical points and de-
fine the QPTs. In these points one typically witnesses the
divergence of the length associated to the two-point correla-
tion function of some relevant quantum field. An alternative
way of characterizing QPTs is by the vanishing, in the ther-
modynamical limit, of the energy gap between the ground
and the first excited state in the critical points. Recently, a
huge interest was raised in the attempt of characterizing
QPTs in terms of the notions and tools of quantum informa-
tion �2�. More specifically QPTs have been studied by ana-
lyzing scaling, asymptotic behavior, and extremal points of
various entanglement measures �3–7�. More recently, the
connection between geometric Berry phases and QPTs in the
case of the XY model has been also studied �8�.

In this paper, we aim to provide yet another characteriza-
tion of the regions of criticality that define QPTs. We shall
show how critical points can be individuated by studying a
surprisingly simple quantity: the overlap, i.e., the scalar
product, between two ground states corresponding to two
slightly different values of the parameters. The physical in-
tuition behind this approach should be obvious: QPTs mark
the separation between regions of the parameter space which
correspond to ground states having deeply different struc-
tural properties, e.g., order parameters. This difference is
here quantified by the simplest Hilbert-space geometrical
quantity, i.e., the overlap. Note that the square modulus
of the overlap is nothing but the fidelity, widely used in

quantum information as a function that provides the criterion
for distinguishability between quantum states �2�. Therefore
it is a natural candidate for a study of macroscopic distin-
guishability between quantum states that define different
macroscopic states of matter �different phases�. When ap-
plied to cases of many-body systems containing many de-
grees of freedom, the overlap �or, fidelity� might seem to be
too coarse a quantity, and not bearing any apparent informa-
tion about the difference in order properties between quan-
tum phases to be of any use. Nevertheless, the main result of
this paper is that in some cases it is indeed possible to do so.
The critical behavior of a system undergoing QPTs is re-
flected in the geometry of its Hilbert space: approaching the
QPTs the overlap �distance� between neighboring ground
states shows a dramatic drop �increase�. We would like to
notice that Cejnar et al. �9� discussed the overlap entropy
between the eigenbases of a system’s Hamiltonian and vari-
ous physically relevant bases, in the context of enhanced
decoherence effects in the regions of criticality �see also Ref.
�10��.

In the following two sections, we conduct our analysis on
the cases of two simple, yet physically relevant and math-
ematically instructive, examples of the Dicke model and the
XY spin-chain model. Next, we discuss the connection be-
tween the scaling and asymptotic behaviors and the so-called
Anderson orthogonality catastrophe �11�. Moreover, the rela-
tion with the dynamical study of decoherence and quantum
criticality �12� is briefly addressed. Finally, in the last section
conclusions are discussed.

For a generic point in parameter space we use the label
q�RL, where L is the number of external parameters deter-
mining the system’s Hamiltonian. As the overlap function
depends on the difference between parameters as well, we
introduce q̃�q+�q to denote the neighboring point q̃ and
the difference �q. Following this notation, we denote the
ground states by �g���g�q�� and �q̃���g�q̃��. In general, all
the functions F�q� evaluated in the point q̃ we will denote as

F̃, while those evaluated in the critical point qc we will de-
note as Fc �note that by combining two cases, we have

F̃c=F�qc+�q��. Then, the overlap function is simply given
by the scalar product �g�q� �g�q̃�� �note that all the results of
this paper could be easily formulated in terms of fidelity as
well�. We shall examine the behavior of the overlap as a
function of q only, while keeping �q fixed and small.
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DICKE MODEL

Our first example is the Dicke model. It describes a dipole
interaction between a single Bosonic mode â and a collection
of N two-level atoms. If for N atoms we introduce the col-

lective angular momentum operators Ĵs ,s� 	±,z
, the Dicke
Hamiltonian has the following form �we take �=1�:

Ĥ��� = �0Ĵz + �â†â +
�

�2j
�â† + â��Ĵ+ + Ĵ−� . �1�

The parameter � is the atom-field coupling strength and is
the one driving the QPTs in this model. Therefore we have
q=� and denote the Hamiltonian’s dependence on that pa-
rameter only. Parameters �0 and � stand for the atomic
level-splitting and Bosonic mode frequency, respectively,
while j describes the length of a collective spin vector, and is
assumed to be constant and equal to j=N /2. In the thermo-
dynamical limit �N→��, which is here equivalent to
�j→��, the Dicke Hamiltonian undergoes a quantum phase
transition for the critical value of its parameter � given by
�c=���0 /2. When ���c, the system is in a highly unex-
cited normal phase, while ���c defines the super-radiant
phase in which both the field and N atoms become macro-
scopically excited. The super-radiant phase is characterized

by the broken symmetry given by the parity operator 	̂

=exp�i
N̂�, N̂= �â†â+ Ĵz+ j�: the ground state is doubly de-
generate. As shown in Ref. �13�, by introducing Bosonic op-

erators b̂ through the Holstein-Primakoff representation �14�,
the above Dicke Hamiltonian �1� can be exactly diagonalized
in the thermodynamical limit. In the normal phase, its form
is

Ĥn��� = �0b̂†b̂ + �â†â + ��â† + â��b̂† + b̂� − j�0. �2�

Its ground state is g�x ,y�= � �+�−


2
�1/4

e−1/2�R,AR��R= �x ,y��
where x and y are the real-space coordinates associated to the

modes â and b̂, A=U−1MU, M =diag��− ,�+� and U an or-
thogonal matrix

U = �c − s

s c


�c=cos � ,s=sin � are given by the squeezing angle
�= �1/2�arctan�4����0 / ��2+�0

2���. �± represent the funda-
mental collective excitations of the system and are given by

�±
2 = 1

2 ��2+�0
2±���2−�0

2�2+16�2��0�. From the above for-
mula, we see that �−��c���−

c =0: the system becomes gap-
less and undergoes a QPT for �=�c.

The overlap, calculated between two ground states g and
g̃, is given by

�g�g̃� = 2
�det A det Ã�1/4

�det�A + Ã��1/2
= 2

�det A�1/4

�det Ã�1/4�det�1 + Ã−1A��1/2
.

�3�

Note that the overlap is a function of both � and ��. In the
limit ��→�c�, with ���0 being fixed, det A=�+�−→0,

while det Ãdet Ãc= �̃+
c �̃−

c �0. The same holds for det�1

+ Ã−1A�, for a sufficiently small �� �note that lim��→0 Ã−1

=A−1�. But in the present case, it is possible to show that for

every, and not just small, ��, det�1+ Ã−1A� does not vanish.
Using the formula det�1+A�=1+TrA+det A for 2�2

matrices, we get det�1+ Ã−1A�→1+Tr�Ãc
−1Ac� �note that

det�Ã−1A�= �det Ã�−1 det A→0�. After a straightforward cal-

culation, we obtain the result: Tr�Ãc
−1Ac�=

�+
c

�̃+
c �̃−

c ��sc̃+cs̃�2�̃+
c

+ �ss̃−cc̃�2�̃−
c�. Therefore Tr�Ãc

−1Ac��0 for every � and we
can conclude that �g � g̃�� ��−�1/4 as ��→�c�. In Ref. �13�, it
was shown that when approaching the critical point from
both normal and super-radiant sides, the excitation energy �−
drops as the square root of ����−�c�, which gives us the
asymptotic behavior of the overlap function in the vicinity of
the critical point: �g � g̃���1/8. Although we have provided
here only the results for overlap function for the system in
the normal phase, the analogous analysis for the super-
radiant phase gives us the same qualitative results, as the two
ground states are again the Gaussian-type states, but with
translated and re-scaled x and y axes. Therefore we omit it
here.

We conclude this section by presenting the numerical re-
sults for the overlap function in the normal phase. In Fig. 1
we plot the overlap �3� between two ground states of the
Dicke Hamiltonian for the resonant case �0=�=1 and
��=10−6. We see that it is almost constant and equal to unity
for a wide range of �, apart from the very narrow area
around �c, when it drastically drops to zero. Such behavior
of the overlap function around the point of criticality can be
ascribed to the fact that the ground state for �=�c becomes
completely delocalized along one of two rotated axes, as
opposed to the localized ground state outside of the point of
criticality �see Ref. �13��.

XY SPIN CHAIN

In the following section, we discuss the example of the
one-dimensional XY anisotropic spin-half chain in the exter-

FIG. 1. �Color online� The overlap function �g � g̃�, Eq. �3�, as a
function of ���c, taken for the resonant case �0=�=1 and
��=10−6. Note the dramatic decreasing of the function as we ap-
proach the point of criticality.
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nal magnetic field. Its Hamiltonian is given by the following
expression:

Ĥ��,�� = − �
i=−M

M �1 + �

2
�̂i

x�̂i+1
x +

1 − �

2
�̂i

y�̂i+1
y +

�

2
�̂i

z� .

�4�

The parameter ��R defines the anisotropy, while ��R rep-
resents external magnetic field along the z axis, up to a factor
1
2 . Therefore q= �� ,��. The operators �̂i

�, �� 	x ,y ,z
 are the
usual Pauli operators. This Hamiltonian can be exactly di-
agonalized by successively applying Jordan-Wigner, Furier,
and Bogoliubov transformation �see, for example, Ref. �1��.
This way, we obtain the following form of the Hamiltonian:

Ĥ�� ,��=�k=−M
M �k�b̂k

†b̂k−1�. The energies of one-particle
excitations are given by �k=��k

2+�2 sin2 2
k
N , with �k

=cos 2
k
N −� and N=2M +1 being the total number of sites

�spins�. One-particle excitations are given by the Fermionic

operators b̂k=cos
�k

2 d̂k− i sin
�k

2 d̂−k
† , with cos �k=�k /�k. Fi-

nally, the ground state �g�� ,���, that is defined as the state to

be annihilated by each operator b̂k �b̂k�g�� ,����0�, is given
as a tensor product of qubitlike states:

�g��,��� = �
k=1

M �cos
�k

2
�0�k�0�−k − i sin

�k

2
�1�k�1�−k� . �5�

In its space of parameters, the family of Hamiltonians
given by Eq. �4� exhibits two regions of criticality, defined
by the existence of gapless excitations: �i� the XX region of
criticality, for �=0 and �� �−1,1�; �ii� the XY region of
criticality given by the lines �= ±1.

As in the previous example, let us first consider the exact
overlap function. From Eq. �5�, it follows that the exact over-
lap function between the ground states �g� and �q̃� is

�g�q��g�q̃�� = �
k=1

M

cos
�k − �̃k

2
, �6�

where �̃k=�k�q̃�. Note the dependence on the number of sites
N that is implicit in all the previous formulas from this sec-
tion. In Fig. 2�a�, we present the numerical result obtained
using the above Eq. �6�, for N=106 spins and ��=��=10−6.
We observe that the regions of criticality are clearly marked
by a sudden drop of the value of the overlap function. As
before, we ascribe this type of behavior to a dramatic change
in the structure of the ground state of the system while un-
dergoing QPTs.

In order to investigate the overlap function more quanti-
tatively and relate its behavior to the existence of the regions
of criticality, we note that while the overlap depends on the
values of both the parameters q and the difference �q, the
regions of criticality are defined by the values of parameters
only. Therefore in the following we choose to study the func-
tions

SN
���,�� � �

k=1

M � ��k

��
�2

, SN
���,�� � �

k=1

M � ��k

��
�2

, �7�

that define the first nonzero order of the Taylor expansion of
the overlap function �6�. The functions SN

��� ,�� and SN
��� ,��

are natural candidates for our study because they express the
“rate of change” of the ground state, taken in the point q.
They do not depend on the difference �q, and although for
every finite N it is possible to find �q small enough so that
the exact overlap is arbitrarily well approximated by the
expression exp�− 1

8SN
q �q��q2�, the functions SN

��� ,�� and
SN

��� ,�� on their own capture the behavior of the �g�q� �g�q̃��
function and are enough for our current study. They also
allow for analytic investigation, together with numerical one.
In Figs. 2�b� and 2�c� we present the numerical results for
SN

��� ,�� and SN
��� ,��, respectively, for N=106 spins. Again,

the regions of criticality could easily be inferred by simply
observing both plots. Note that in this case the relative dif-
ference between the numerical values in the regions of criti-
cality and elsewhere is much bigger than in the case of the
exact overlap �see Fig. 2�a��. But now, both plots are needed
to detect both regions of criticality. This is so because by
moving along �=0, while keeping ����1, we do not move
outside the XX region of criticality and therefore do not ex-
pect the qualitative change in the structure of the ground
state, and consequently in the behavior of SN

��� ,�� as well.
The same holds for SN

��� ,�� and the XY region of criticality.
We first examine the scaling behavior of SN

��� ,�� and
SN

��� ,�� with respect to number of spins N. The numerics
present us with the following results. First, as expected,
SN

��� ,�� and SN
��� ,�� scale linearly with N when ��→0�

and ��→ ±1�, respectively. In the regions of criticality, we
have that SN

���� � =1,���N2 /�2 and SN
���� � �1,�=0��N2

�we note here that SN
���� � �1,�=0�=0�.

We have also conducted a separate analytical study, con-
firming the above numerical results. First, we note that for
every point q in parameter space, and every finite N, partial
derivatives � ��k

��
� and � ��k

��
� are continuous functions of the

parameters. They can become infinite only in the thermody-
namical limit, when �N→��, and only in the regions of criti-
cality. By looking at the explicit form of derivatives �we use
xk= 2


N k�:

� ��k

��
� =

��sin xk�
��cos xk − ��2 + �2�sin xk�2�

, �8�

� ��k

��
� = −

�sin xk��cos xk − ��
��cos xk − ��2 + �2�sin xk�2�

, �9�

we see that only when the energy �k �the denominator of
both of the above expressions� gets arbitrarily small �or
zero�, the derivatives �8� and �9� can become divergent. In
other words, only when cos xk gets arbitrarily close to �, and
either � or sin xk get close to zero. That is, in the regions of
criticality. Note that we assume that for every N�N and
k� 	1, . . .M
, equation cos xk=� has no solution, which pre-
sents a generic case ��’s that allow for the solutions of this
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equation form a set of measure zero on the �−1,1� interval�.
Therefore outside the regions of criticality SN

��� ,�� and
SN

��� ,�� scale linearly with N.
Regarding the regions of criticality, we first consider the

scaling behavior of SN
��� ,�� in the vicinity of the XX criti-

cality. As there always exists k0 such that in the �N→�� limit
cos xk0

→�, then for such xk0
and every finite �, it follows

from Eq. �8� that � ��k0

��
�→ �� sin xk0

�−1, when �N→��. In
other words, it does not scale with N �note that although
k0=k0�N� is a function of N, limN→� sin xk0

=sin arccos ��.
As all other derivatives are finite, we have that
SN

������1,�→0��N /�2. Similar discussion can be applied
to the case of SN

��� ,�� in the XY region of criticality. Again,

there exists a qubit defined by k1=1 for which cos xk1
→1 in

the �N→�� limit, so that its existence could bring about the
scaling of SN

��� ,�� larger than linear in thermodynamical
limit. Using the Taylor expansion of sine and cosine func-
tions around zero �note that in that case, sin xk1

→0 as well�,
from Eq. �9� we obtain � ��k

��
��xk1

/�2→0, �N→��. In other
words, SN

�����=1,���N.
Now, we turn to more interesting cases of the relevant

functions SN
��� ,�� and SN

��� ,��, in the XY and XX regions of
criticality, respectively. Using Taylor expansions of sine and
cosine functions around zero, we see that in �= ±1 the de-

rivative � ��k1

��
� given by k1=1 behaves like � ��k1

��
��N / �2
�� as

�N→�� �see Eq. �8�� and therefore SN
�����=1,���N2 /�2. We

FIG. 2. �Color online� �a� The overlap func-
tion �g�q� �g�q̃��, as a function of � and �, for
N=106 and ��=��=10−6. Note the clear dips of
the plot in the regions of criticality. �b� SN

��� ,��.
�c� SN

��� ,��.
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also see that the scaling factor depends on �. Finally, from
Eq. �9�, we also see that SN

���� � �1,�=0��N2.
The alternative way to examine the signatures of QPT is

to look at the asymptotic behavior of two functions �7� near
the regions of criticality. From the numerical study we obtain
that the asymptotic behavior of SN

��� ,�� in the vicinity of
critical points �c= ±1, �� �0,1�, is given by the following
formula: SN

��� ,���a�� ,N� / �1−�����,N�. From the study of
the scaling behavior, we already know that a�� ,N�=a���N2

and that a����1/�2. Further, from numerics we have that the
exponent ��� ,N� is constant with respect to � and ap-
proaches to �=1 as �N→��. Such asymptotic behavior, with
constant exponent �=1 for all �� �0,1� could be seen as a
consequence of the fact that in that range of parameters the
XY model belongs to the same class of universality. The
numerics gives also the asymptotic behavior of SN

��� ,�� in
the vicinity of �=0 �with ����1� similar to the previous one,
SN

��� ,���b�� ,N� /����,N�, with the exponent ��� ,N� ap-
proaching to �=1 as �N→��. But, the coefficient b�� ,N�
depends only on N, and as noted before, scales linearly with
it, b�� ,N��bN.

QPT: ORTHOGONALITY CATASTROPHE,
LOSCHMIDT ECHO

The above two examples represent a generic case of a
many-body system which exhibits continuous QPTs only in
the thermodynamical limit. In the case of the XY model, as
the number of spins increases, the overlap between two dif-
ferent ground states �5� approaches zero, no matter how
small the difference in parameters �q is, so that in thermo-
dynamical limit each two ground states are mutually or-
thogonal; they live in a continuous tensor product space �15�.
Such behavior of systems having infinitely many degrees of
freedom, when the two physical states corresponding to two
arbitrarily close sets of parameters �two arbitrarily similar
physical situations� become orthogonal to each other, has
been already studied in many-body physics and is known as
Anderson orthogonality catastrophe �11�. From our study of
the XY model, we have seen not only that every two ground
states become orthogonal in thermodynamical limit, but also
the rate of “orthogonalization” between two ground states of
large, but finite system, changes qualitatively and grows
faster in the vicinity of the regions of criticality. This way,
the regions of criticality of an infinite system are already
marked by the scaling and asymptotic behavior of the rel-
evant functions of a finite-size system. Loosely speaking, the
regions of criticality of QPTs are given as regions where the
orthogonality catastrophe is expressed on a qualitatively
greater scale. Notice that recently, the occurrence of a par-
ticular instance of Anderson-type orthogonality catastrophe
was studied for the case of a system in the vicinity of QPTs
�16�.

Now we would like to establish an explicit connection
between the sort of kinematical approach used in this

paper and the dynamical one of Ref. �12�. In order to do so
let us introduce the projected density of states function

D�� ;q , q̃���g�q̃�����− Ĥ�q���g�q̃�� that describes the spread
of the ground state �g�q̃�� expressed in the eigenbasis ob-
tained for the point q. Then, the square of the overlap can be
expressed as

��g�q��g�q̃���2 = 1 − �
E1

�

D���d� �10�

�E1 denotes the first excited eigenvalue�. We see that in re-
gions in which the spread of �g�q̃�� with respect to �g�q�� is
big �quantified in terms of the variance of D����, in other
words, in regions where two ground states differ signifi-
cantly, the overlap will be small. Recently, Quan et al. �12�
established a link between the critical behavior of the envi-
ronment and quantum decoherence, showing that the
Loschmidt echo �17,18� L�q , t� of the environment exponen-
tially goes to zero as we approach the regions of criticality. A
simple algebra gives us that the Fourier transform of the
projected density of states is precisely the Loschmidt echo,
��−�

+�D���e−i�td��2=L�q , t�. We see that the kinematics of a
system, given by the geometry of ground states through the
overlap function, influences its dynamics as well: the smaller
the overlap, i.e., broader D���, the faster the decay of the
Loschmidt echo.

CONCLUSIONS AND DISCUSSION

In this paper, by discussing the examples of the Dicke and
XY spin-chain models, we have presented a characterization
of quantum phase transitions based on the study of the scal-
ing and asymptotic behaviors of the overlap between two
ground states taken in two close points of the parameter
space. Though this quantity might in general not provide an
efficient numerical tool it is conceptually quite appealing. In
fact the ground state overlap is a purely Hilbert-space geo-
metrical quantity, whose investigation does not rely on any a
priori understanding of the specific kind of order patterns or
peculiar dynamical correlations hidden in the analyzed sys-
tem. While in the case of the Dicke Hamiltonian it was pos-
sible to analyze the overlap function directly in the thermo-
dynamical limit, the case of the XY model is more subtle.
The process of “orthogonalization� between two ground
states has two physically different mechanisms in the case
when two states belong to two different phases: one is a
common decrease of the overlap due to infinite number of
subsystems in thermodynamical limit, the other is character-
istic for the case of QPTs and is due to different structures of
ground states in different quantum phases.
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